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a b s t r a c t

Very well known difficulties of the theoretical description of the f ↔ f electric dipole transitions of lan-
thanides are addressed in the old language of the standard Judd–Ofelt (J–O) theory, which has been
widely applied for more than 45 years. New light is shed on a competitive physical mechanism of these
transitions, which is presented to complement the existing J–O model. Possible new solutions are given
for the old problems of the negative intensity parameters obtained from the adjusting procedure. An
alternative scheme for the reproduction of the hypersensitive transitions is discussed and a theoretical
n memory of Brian G. Wybourne

1935–2003).
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description of highly forbidden transitions 0–0 and 0–1 observed for Eu3+ and Sm2+ ions is presented.

© 2008 Elsevier B.V. All rights reserved.
arametrization of f-spectra

. Introduction

The problems of the reproduction of the hypersensitive f ↔ f
ransitions and of the theoretical description of highly forbidden
ransitions 0–0 and 0–1 observed for Eu3+ and Sm2+ ions are strong

otivation for the search for a reliable parametrization of f-spectra.
t the same time, these particular transitions are the best examples
f the important application of the spectroscopy of the lanthanide

ons doped in various materials as diagnostic and therapeutic tools.
DOTA, EDTA, EDTMP, CDTMP, DTPA, DOTP are the organic

helates that, when coordinated with the Gd ion, are contrast
gents used in clinical medicine to enhance NMR signals enabling
he diagnosis of pathological changes in various organs of human
ody. When these systems are chelated with the other mem-
ers of the lanthanide family, they act as markers of cancerous
hanges in different tissues. The signals monitoring the presence
f a tumor originate from the sensitized luminescence of the

anthanide ion imbedded into the chelate built like a cage. The
rchitecture of the cage is correlated with the kind of the targeted
issue. Although it is possible to verify, using the radiative iso-

opes of the lanthanides, where a certain system is absorbed the

ost, still the mechanisms of the energy transfer and of subse-
uent luminescence are not well understood. Not much is also is
nown about the geometry of various cages. Only recently, due to

∗ Corresponding author. Tel.: +48 56 6113268.
E-mail address: lidia.smentek@vanderbilt.edu (L. Smentek).

925-8388/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2008.11.044
the results of the DFT calculations, several aspects of the struc-
ture of various conformers of the chelates are becoming clearer.
This knowledge is crucial for designing new systems that would be
characterized by more efficient energy transfer and stronger lumi-
nescence enhanced by attaching to the main cage of the chelate
the so-called antenna, which harvests the energy from the exter-
nal beam. Special attention is also directed to the synthesis of such
chelates that absorb visible light and emit infra-red radiation, the
optimal one due to its penetration depth through biological sam-
ples.

The best benchmark for the theoretical investigations devoted
to the structural properties of the potential probes are the highly
forbidden by the standard selection rules f ↔ f electric dipole
transitions 0↔ 0 and 0↔ 1 of Eu3+. Indeed, in the case of
several chelates coordinated with the Eu ion there were two
lines observed in the emission spectrum assigned to the 5D0 →
7F0 transition! This was obvious evidence that at least two
conformers of a given cage exist in equilibrium. This expec-
tation based on the spectroscopic properties of a system was
only recently confirmed by the numerical analysis of the opti-
mal geometries of DOTA [1], EDTMP [2], CDTMP [3] and DOTP
[4].

Thus, not only for the sake of the pure knowledge about the

possible theoretical description of the transitions forbidden by the
standard Judd–Ofelt selection rules, but also because of their impor-
tant applications, the old problems of the theory of f-spectra are
presented here in a new light shed by the results of the recent
investigations.

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:lidia.smentek@vanderbilt.edu
dx.doi.org/10.1016/j.jallcom.2008.11.044
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. Standard Judd–Ofelt theory

The standard Judd–Ofelt theory [5,6] of f ↔ f electric dipole
ransitions is based on the Rayleigh-Schrödinger perturbation the-
ry applied for the following Hamiltonian,

= H0 + �(PVCF Q + QVCF P) (1)

here H0 describes the system within the single configuration
pproximation and free ionic system approximation. Thus, P is
panned by the eigenfunctions � 0

i
of H0 of the ground electron

onfiguration 4f N of the lanthanide ion. Its orthogonal complement
= 1− P is built of the projection operators originating from the

ingly excited configurations 4f N−1n′�′ (all the operators regarded
ere are single particle objects, and therefore the doubly excited
onfigurations do not contribute). In this approach the electric
ipole transitions are regarded as forced by the perturbing influ-
nce of the inter-shell interactions via the crystal field potential
CF defined as

CF =
∑

tp

Bt
p

∑
i

rt
i C(t)

p (ϑiϕi) (2)

ith structural parameters (crystal field parameters) Bt
p.

The transition amplitude is defined by the matrix element of the
adiation operator D(1)

� of the form

(1)
� =

∑
i

riC
(1)
� (ϑiϕi) (3)

ue to the parity considerations the electric dipole transition
mplitude vanishes when evaluated with the eigenfunctions of H0
all states are of the same parity). The first non-vanishing contribu-
ions to the transition amplitude are of the second order, and they
re determined by the matrix elements of D(1) with the functions
xpanded up to the first order corrections

i = � 0
i + �� 1

i (4)

here

(1)
i
=

∑
k

〈� 0
k
|QVcrystP|� 0

i
〉

E0
i
− E0

k

� 0
k (5)

rom the whole expansion of the crystal field potential in Eq. (2),
nly the interactions via its odd part are effective in forcing the
lectric dipole transitions (parity considerations). Following Judd
nd Ofelt it is assumed that the energy levels of distinct config-
rations might be regarded as degenerate in relation to the large
nergy distance between the ground configuration 4f N and all the
xcited ones. Therefore it is possible to perform the partial clo-
ure and derive the transition amplitude in its effective operator
orm

�
J–O = 2(−1)�

odd∑
t

∑
p

Bt
p

even∑
�

even∑
�′

(−1)p[�]1/2

(
1 t �
� p −(� + p)

)
A�

t (�′)Rt
JO(�′)〈4f N� 0

f |U
(�)
�+p|4f N� 0

i 〉 (6)

here the angular term is defined as
�
t (�′) = [�]1/2

{
t � 1
f �′ f

}
< f ‖C(1)‖�′〉〈�′‖C(t)‖f 〉 (7)

nd, as a factor, it has the same value for all the lanthanide ions.
and Compounds 488 (2009) 586–590 587

The radial integrals of the original Judd–Ofelt theory have the
form

Rt
JO(�′) =

∑
n′

〈4f |r|n′�′〉〈n′�′|rt |4f 〉
(	4f − 	n′�′ )

and when expressed in the terms of the perturbed functions [7],
they are represented by a single integral, namely

Rt
JO(�′) = 〈
t(4f → �′)|r|4f 〉 (8)

where |4f 〉 ≡ P4f . The perturbed functions 
t(4f → �′) ≡ 
t(r; 4f →
�′) contain all the first-order corrections caused by the single excita-
tions from the 4f shell to one-electron state of n′�′ symmetry taken
into account via the crystal field potential. Indeed, each 
t(4f → �′)
is a linear combination of the terms


t(4f → �′) =
∑

n′

〈4f |rt |n′�′〉
(ε4f − εn′�′ )

Pn′�′ (r)

Note that due to the perturbed function approach the sum of the
original Judd–Ofelt radial integrals over the complete radial basis
sets of one electron excited functions of �′ symmetry is replaced by
a single integral with new functions that contain this very trouble-
some summation inside their definition (see Ref. [7]).

The expression for the transition amplitude derived by Judd and
Ofelt is the basic one in the theory of f-spectra. In order to evalu-
ate its applicability and usefulness, to discuss its weak and strong
points, some questions are answered below.
• Is it possible to perform ab initio calculations using the expression

in Eq. (6)?
∗ There is no problem with the evaluation of the angular parts

of the effective operators defined in Eq. (6);
∗ All the problems with the evaluation of the radial integrals are

solved by using the perturbed function approach, and their values
for all lanthanide ions, evaluated for the complete radial basis sets
of one electron functions are published in Ref. [8];
∗ Unfortunately still it is impossible to perform direct calcula-

tions using the effective operators in Eq. (6) because the odd rank
crystal field parameters Bt

p are not known, and there is no reliable
source of their values available.
•Would the results of such calculations be reliable, if the odd rank

crystal field parameters were known?
∗ As mentioned, the standard Judd–Ofelt theory is based on

the single configuration approximation and therefore the impact
of electron correlation is completely ignored. In order to improve
this theoretical model the approach has to be based on the double
perturbation theory applied for the Hamiltonian

H = H0 + �(PVCF Q + QVCF P)+�(PVcorrQ + QVcorrP) (9)

where the second perturbation is the non-central part of the
Coulomb interaction and represents correlation effects. As a con-
sequence instead of Eq. (6) the effective operators defined up to the
third order have to be included. The numerical analysis of the rela-
tive importance of various contributions to the transition amplitude
has demonstrated that electron correlation contributions, although
of the third order, very often and usually for the heavier ions across
the lanthanide series are dominant in comparison to the values of
the Judd–Ofelt terms of the second order [9].

3. Semiempirical apporach
The problems with the direct evaluation of the amplitude of f ↔
f transitions are the reason that the semi-empirical realization of
the Judd–Ofelt theory is the most known and commonly used in
practice. In this model the transitions are reproduced within the
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ne particle parametrization

J–O
f←i
=

∑
�=2,4,6

˝�|〈�f ||U(�)||�i〉|2 (10)

his means that the intensity of all the transitions in a given system
re determined by at most three intensity parameters modulated
y the square of the reduced matrix elements of the unit tensor
perators between the states involved in the process.

In fact it should be pointed out that there is not much in com-
on with the original Judd–Ofelt theory and the parametrization

cheme defined in Eq. (10). Indeed, the expression in Eq. (10) means
nly that the parametrization of the f-spectra is one particle (the

udd–Ofelt effective operators are one particle), that there are three
arameters common for all transitions in a given system (with-
ut the physical meaning or interpretation), and finally that the
arametrization is non-relativistic (as unit tensor operators of the
riginal formulation of the Judd–Ofelt theory). There is neither a
hysical model nor a physical mechanisms involved in the expres-
ion (10), nor any evidence of the approximations of the physical
odel discussed in the previous section in connection with the

riginal Judd–Ofelt theory. Even there is no any evidence in Eq.
10) that the crystal field potential is the forcing mechanism of
he electric dipole f ↔ f transitions. Just the opposite, the intensity
arameters, traditionally called the Judd–Ofelt parameters, repre-
ent the perturbing influence of ALL physical mechanisms, which
re theoretically described by one particle tensor operators acting
ithin the orbital space. In addition, there is no a priori require-
ent that the intensity parameters HAVE to be positive! ˝� is not
square of the coefficient of the tensor operator U in Eq. (6). Each
� does not represent the second order terms derived from the

erturbation approach; ˝�’s are freely varying parameters without
hysical interpretation. There is only one case in which the value of
2 is expected to be positive and that is when it determines by itself

he intensity of a hypersensitive transition. However, very often in
uch cases the fitting procedure based on the scheme in (10) gives
easonable reproduction only when the hypersensitive transition is
xcluded from the adjusted set. The latter problem is solved by the
xtended parametrization scheme presented below.

. Electric dipole hyperfine interactions

Does any other forcing mechanism of f ↔ f transitions, except the
crystal field potential, exist?

When the perturbing operator Vcryst in Eq. (1) is replaced by the
ultipole hyperfine interactions VEM , the wave functions of H0 are
odified by the corrections of parity opposite to the parity of the

f N [10]. This parity condition is satisfied only for the odd part of
EM . As a result, there are non-zero second-order contributions that
re of a new origin, and which compete at the second order with the
tandard Judd–Ofelt terms. Thus, the interactions via VEM represent
ew mechanism, which forces the electric dipole f ↔ f transitions.

The distortion from the spherical symmetry of a nucleus with
he spin I > 0 is described by the electrostatic interactions between
he electron and nucleon charge densities, which, in the terms of
he multipole expansion, have the following tensorial form,

EM =
∑

k

rk
n

rk+1
e

(C(k)
e · C(k)

n ) (11)
hen the energy is evaluated within the single configuration
pproximation, k in the expansion above is even, and the remaining
ontributions for k odd vanish. If the inter-shell electric multipole
yperfine interactions are analyzed, there are non-zero contribu-
ions to the transition amplitude for k odd in Eq. (11).
and Compounds 488 (2009) 586–590

It is straightforward to find within the framework of the basic
assumptions and approximations of the standard Judd–Ofelt theory
that these new second-order one-particle effective operators have
the following form,

2

�
EM = 2(−1)�

odd∑
k

∑
q

Mk
q

even∑
�′

even∑
�

[�]1/2

(
1 k �
� q −(� + q)

)
A�

k (�′)R−k−1
JO (�′)〈4f N� 0

f |U
(�)
�+q|4f N� 0

i 〉
(12)

where the angular factors are defined by Eq. (7), the radial integral
is presented in Eq. (8) and Mk

q is the matrix element of the nuclear
multipole moment.

The tensorial structure of these effective operators is almost the
same as those of the standard Judd–Ofelt effective operators from
Eq. (7). Note that � in Eq. (12) is also even, and the selection rules for
the non-vanishing contributions are the same; only the odd rank
crystal field parameters Bt

p of Eq. (7) are replaced in Eq. (12) by M1
q ,

and the physical origin in both cases is different. At the same time,
since the transition amplitude is not determined any more by the
odd rank crystal field parameters, it is possible to perform direct
calculations.

The second order Judd–Ofelt effective operators represent the
electrostatic interactions caused by the distortion of the spherical
symmetry of a free ion by its environment represented by the crystal
field potential. The new second order terms originate from the elec-
trostatic interactions that are the consequence of the distortion of a
spherical symmetry of a nucleus caused by its closest environment
created by the surrounding electrons.

• Is the parametrization scheme of the f-spectra changed when the
hyperfine interactions are taken into account?

The tensorial structure of the hyperfine originated terms con-
tributing to the transition amplitude indicates that all these
contributions are also included within the standard parametriza-
tion scheme of Judd and Ofelt

Sf←i =
∑

�=2,4,6

˝′�|〈�f ||U(�)||�i〉|2

where the intensity parameters are only formally distinguished
from those in expression (10). Indeed, when the values of ˝�’s
are evaluated from the fitting procedure, as mentioned above, they
as freely adjusted parameters represent ALL physical mechanisms
taken into account at all orders of the perturbation expansion.

Thus, the intensity parameters represent the interplay between
two forcing mechanism of the f ↔ f electric dipole transitions: the
crystal field potential and electric dipole hyperfine interaction. In
the particular case of � = 2, the term which determines the inten-
sity of the hypersensitive transition ˝2 contains the contributions
from Eq. (6) for t = 1, and from Eq. (12) for k = 1. However, there
are also such examples for which the hypersensitive transitions
are observed in spite of the fact that there are no terms for t = 1
in the expansion of the crystal field potential. Since the hyperfine
mechanism is independent of the crystallographic symmetry of the
system, it is concluded that for such systems the electric dipole
hyperfine interactions are the sole mechanism which is responsible
for the hypersensitivity of some electric dipole transitions.
5. Relativistic parametrization of f-spectra

• Is it possible to reproduce ALL electric dipole f ↔ f transitions using
the one particle non-relativistic parametrization scheme of Eq. (10)?
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When �f ≡ 7F0 in Eq. (10), only the transitions to the levels
ssigned by J = 2, 4, 6 are allowed by the selection rules of the stan-
ard Judd–Ofelt parametrization scheme. This means that in the
articular case of Eu ion, all the transitions J = 0↔ J′ = 0, 1, 3, . . . ,
dd are forbidden, although they are observed and indeed very

mportant, as mentioned in the Introduction. There is also a prob-
em with the reproduction of the hypersensitive transitions using
he scheme in Eq. (10). In fact, very often the fitting procedure
erformed for the set of the allowed transitions which includes
he hypersensitive ones (for example 5D0 → 7F2 for Eu ion) gives
ather poor reproduction of the measurements. In all these cases
he Judd–Ofelt parametrization scheme is not adequate.

It is a common belief that in order to improve the quality of the
eproduction of the spectra it is enough to enlarge the number of the
ntensity parameters. The results of the numerical analysis [11,12],
upported by earlier work of Auzel [13], demonstrated however that
his is not the case when the semi-empirical procedure is applied
or f-electron spectra. The extension of the scheme in Eq. (10) by the
dd-rank intensity parameters, while alleviating the selection rules
or the transitions from J = 0 to the levels with J = odd, still does not
ead to better reproduction. This means that not only the number
f the adjusted parameters is crucial but the physical model from
hich the parametrization scheme originates.

The Judd–Ofelt parametrization scheme is non-relativistic as
emonstrated by the fact that the unit tensor operators U in the
atrix elements modulating the intensity parameters act only
ithin the orbital space. In this way, even if the fitting procedure

s applied, from all possible physical mechanisms contributing to
he transition amplitude those of a relativistic nature are excluded.
ndeed, the intensity parameters ˝� do not contain the impact
f spin–orbit and hyperfine magnetic interactions, for example
14–17]. The relativistic formulation of the intensity theory of the
↔ f transitions [18,19] led to the conclusion that the original oper-
tors U(�) in the parametrization scheme should be replaced by the
ouble tensor operators that act within the spin–orbital space. This

s why, instead of Eq. (10), a new extended and physically enriched
cheme has been proposed [11,12]

rel
f←i =

∑
�

∑
�k

˝�k
� |〈�f |W (�k)�|�i〉|2. (13)

he number of the parameters is simultanously enlarged, and there-
ore the fitting procedure now requires richer experimental data. In
act the number of parameters is limited by the condition that the
um of the ranks � + k + � has to be even to preserve the hermiticity
f the effective operators determining the intensity.

Is the new parametrization scheme applicable for ALL f ↔ f transi-
tions?

The relativistic parametrization scheme allows one to perform
he fitting procedure for all f ↔ f transitions, including those for-
idden by the non-relativistic approach. Even the transition 0↔ 0
bserved in Eu, which is not tractable theoretically by all the pre-
ious parameterizations, is very well reproduced by the expression
n Eq. (13). Indeed, when Jf = Ji = 0 the only consequence is that

= 0, which means that � = k, and the parameter ˝(11)
0 determines

he intensity of this transition. In addition, the fitting procedure

erformed in accordance with the relativistic scheme gives much
etter reproduction of other transitions, including those allowed
y the Judd–Ofelt selection rules, the hypersensitive ones, and
lso transitions determined by the effective operators with rank
= odd.
Fig. 1. Relative errors of reproduction of the intensity of f ↔ f transitions observed
in the Eu3+ ion in an acetate crystal [11,20].

6. Summary

The summary of this discussion is illustrated in Fig. 1, where the
quality of the results of numerical calculations are presented for var-
ious transitions observed in the Eu3+ion in an acetate crystal [20].
In the figure not the actual values of the intensities of the appropri-
ate transitions are presented, but rather the errors of reproduction
defined as follows,

� = |Pexp − Pcalc|
Pexp

× 100%

where Pcalc denotes the value of the intensity of a particular transi-
tion evaluated within the Judd–Ofelt scheme (SJ–O

f←i
, Eq. (10)), within

non-relativistic scheme which is the Judd–Ofelt approach extended
by the odd rank intensity parameters, Snrel

f←i
, and finally within the

relativistic scheme (Srel
f←i

, Eq. (13)).
The arrows below the horizontal axis point out the perfect

reproduction of the measured intensity (� = 0). The white bars rep-
resent the quality of the standard Judd–Ofelt scheme, the gray color
describes the values of � obtained for the non-relativistic scheme in
which the odd rank intensity parameters are included, and finally,
the black bars show the accuracy of the reproduction when the
relativistic scheme is applied. The other bars in the Fig. 1. denote
the transitions which are forbidden by the Judd–Ofelt and non-
relativistic schemes (error of reproduction of 100%). One of these
forbidden transitions, 7F0 → 5D3, becomes allowed by the selec-
tion rules of the non-relativistic scheme, while 7F0 → 5D0 is still
forbidden; it becomes allowed only within the relativistic scheme.

The results of the fitting procedure of the standard Judd–Ofelt
scheme are improved when the extended model is applied, how-
ever still there is a rather large discrepancy between the calculated
and measured intensities. In the case of all transitions included
in the semi-empirical procedure there is visible improvement of
the quality of the reproduction based on the relativistic scheme.
Note that for the first time the intensity of the unusual and highly
forbidden transition 7F0 → 5D0 is reproduced via the fitting pro-
cedure, and this is achieved by applying the relativistic scheme of
parametrization. In fact this is the only parametrization scheme in
which all transitions of a given system are described by the very

same semi-empirical approach.

In addition, it should be pointed out that the parameter ˝11
0 ,

which is responsible for the 0→ 0 transition, represents the impact
due to the J − J mixing and the spin–orbit interaction (indeed,
the spin–orbit interaction is represented by the unit double ten-
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or operator w(11)0). These are the contributions, which have been
valuated by Downer and Burdick [15,16], Tanaka and Kushida [21]
n their direct calculations of the intensity of 7F0 → 5D0 transition
nhanced by the intensity of the transition 7F0 → 5D2 by means of
he “borrowing of intensity” mechanism suggested by Wybourne
n 1967 ([8], page 213 and references there); all these contribu-
ions are disregarded by the Judd–Ofelt and also non-relativistic
arametrization schemes as a result of the limitation of the unit ten-
or operators U, which act only within the orbital space. This means
hat extension of the effective operators to the spin-orbital space
ives a unique possibility to account for all the interactions, which
ave been included previously in ab initio-type calculations men-
ioned above. These pioneering calculations and their results are a
trong motivation for extension of the parametrization scheme of
-spectra by all those interactions, which are represented by double
ensor operators.

Although Fig. 1 shows remarkable improvement of the results
f the fitting procedure based on the relativistic scheme applied

3+
or the particular example of the Eu in an acetate crystal, more
eneral conclusions about the effectiveness and accuracy of the rel-
tivistic scheme require further numerical analysis. At this point of
he discussion the main achievement of this preliminary investi-
ations is the fact that all the transitions, those allowed and also

[
[
[
[
[
[

and Compounds 488 (2009) 586–590

forbidden by the standard scheme, are reproduced by the same
semi-empirical approach.
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